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Abstract: In recent years, the cryptocurrency market has transformed into one of the primary
platforms for high-risk, high-return trading, characterized by unprecedented growth, extreme
volatility, and the development of complex trading instruments. Among these, Tether (USDT),
known as a stablecoin backed by the U.S. dollar, despite its goal of maintaining a stable value,
experiences noticeable periodic fluctuations across different trading platforms, creating
opportunities for short-term volatility trading. This study aims to design a hybrid predictive
model for volatility trading in the global Tether market using artificial intelligence algorithms.
In this research, a set of technical indicators (including RSI, MACD, EMA, Bollinger Bands,
etc.) was extracted and used as input features for machine learning models (Random Forest,
XGBoost) and deep learning models (LSTM, CNN, BiLSTM). Then, by implementing an
intelligent hybrid framework, the short-term price volatility trends of Tether over a multi-year
period were modeled, and the performance of the proposed model was compared with
baseline models. The results obtained from the analysis of real trading data show that the
proposed model achieved higher prediction accuracy in identifying tradable volatility and
demonstrated a significant advantage in profitability compared to baseline algorithms. This
research, focusing on a stablecoin that has previously received little attention in scientific
studies, offers a novel framework for precise analysis and automated opportunity detection in
quasi-stable financial markets.

Keywords: Tether cryptocurrency (USDT), volatility trading, artificial intelligence algorithms,
deep learning, technical analysis, financial forecasting, cryptocurrency market

1. Introduction

The unprecedented growth of financial markets in the digital age has led to a
significant shift in the tools and technologies employed by traders, analysts, and

institutions. One of the most transformative developments in recent years has been

the integration of Artificial Intelligence (Al) into trading systems. Al technologies, by virtue of their capacity to
process vast datasets, identify nonlinear patterns, and self-adapt through learning algorithms, are rapidly
redefining the paradigms of stock market prediction, trading strategy, and financial risk management [1, 2]. As

traditional trading methodologies struggle to cope with the increasing complexity, volatility, and volume of market
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data, Al offers a robust, scalable, and intelligent alternative for making informed and timely investment decisions
[3, 4].

The application of Al in financial markets is not limited to automation or computational efficiency; rather, it
signifies a profound evolution in how predictions are made and trades are executed. By incorporating machine
learning, deep learning, reinforcement learning, and natural language processing, Al models can continuously
learn from historical data, adapt to market anomalies, and even factor in exogenous variables such as geopolitical
events and macroeconomic indicators [5, 6]. These capabilities have fueled a surge in Al-powered platforms that
support algorithmic and high-frequency trading, enhancing not just speed but also the strategic depth of market
interactions [7, 8].

One of the major advantages of Al integration lies in its capacity for predictive analytics. Al-driven forecasting
models can outperform classical econometric models by capturing hidden market signals and dynamic interactions
among variables [9, 10]. In particular, Long Short-Term Memory (LSTM) networks and Convolutional Neural
Networks (CNNs) have demonstrated notable success in processing time-series financial data and identifying both
short- and long-term dependencies in market trends [11]. These deep learning models enable enhanced accuracy
in price prediction and volatility estimation, which are crucial for developing effective trading strategies.

The emergence of reinforcement learning techniques such as Deep Q-Networks (DQNs) and Proximal Policy
Optimization (PPO) has added a new dimension to algorithmic trading. Rather than relying solely on passive
historical analysis, reinforcement learning agents interact with market environments to optimize buy/sell decisions
dynamically [12, 13]. This paradigm shift allows for the creation of adaptive, autonomous trading systems capable
of responding in real-time to fluctuating market conditions and learning from the outcomes of past trades [14].
Reinforcement learning strategies, when calibrated properly, can also be aligned with risk management
frameworks to minimize drawdowns while maximizing cumulative returns.

Despite these advantages, the adoption of Alin financial trading is accompanied by critical challenges and ethical
considerations. Issues such as overfitting, black-box decision-making, model interpretability, and data bias can
compromise the reliability of Al systems [5]. Additionally, high-frequency Al-based trading raises concerns about
market stability, liquidity fragmentation, and systemic risks —especially in highly interconnected global markets
[15]. These risks necessitate transparent Al governance frameworks and regulatory oversight to ensure the
responsible use of Al in financial systems [1].

Moreover, the integration of quantum-inspired algorithms into Al architectures is pushing the frontiers of high-
frequency trading even further. These hybrid models leverage the computational speed and optimization potential
of quantum principles to enhance model convergence and reduce latency in execution [6, 8]. This innovation
presents exciting opportunities for predictive modeling in complex, multi-variable trading environments, though
it also amplifies the need for secure infrastructure and ethical safeguards.

The transformative potential of Al in emerging and frontier markets has also become a focal point of recent
research. While developed economies have been early adopters of Al-enabled trading technologies, the
democratization of these tools is facilitating market access and participation across geographies [16, 17]. Al
applications in stock markets of emerging economies are being explored for their role in boosting efficiency,
reducing information asymmetry, and supporting inclusive growth [18, 19]. However, infrastructure limitations,
data availability, and institutional readiness remain barriers that need to be addressed to unlock the full potential

of Al in these contexts.
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An increasing body of literature is also investigating how Al contributes to optimizing portfolio diversification,
hedging strategies, and financial derivatives pricing. For example, deep reinforcement learning models have been
used to model investor behavior under uncertainty and to design hedging instruments that adapt to market
sentiment and regime shifts [20, 21]. Such innovations are particularly relevant in the context of post-pandemic
recovery, where market unpredictability has accentuated the importance of resilient and agile financial systems.

The intersection of Al and behavioral finance offers yet another promising avenue. AI models are now being
trained not only on numerical data but also on textual and sentiment data extracted from news articles, financial
reports, and social media. Natural language processing techniques allow Al systems to capture market sentiment,
predict investor mood swings, and anticipate potential market reactions [4, 7]. This is particularly relevant in the
era of meme stocks and socially coordinated investment behaviors that elude traditional quantitative analysis.

Al's potential is also being recognized in regulatory technologies (RegTech), where it supports market
surveillance, fraud detection, and compliance enforcement. Regulators and exchanges are increasingly deploying
Al to monitor trading anomalies, identify suspicious activities, and ensure transparency in financial transactions
[5, 14]. In this context, Al is not just a tool for traders but also a critical component of the broader financial
ecosystem’s governance.

The current trajectory of Al development in trading is thus both promising and multidimensional. As global
markets become more integrated and complex, the ability to leverage Al for real-time analytics, autonomous
decision-making, and adaptive strategy formulation will likely become a fundamental competitive advantage for
institutional investors and retail traders alike [2, 3]. However, this technological momentum must be balanced with

an awareness of the associated risks, including over-automation, data misuse, and algorithmic bias.

2. Methodology

In this study, the price and trading data of the cryptocurrency Tether (USDT) in the global market were used as
a representative sample of the digital currency market. The data were extracted from reliable and well-known
sources such as Binance, Coinbase, and Kraken exchanges. The data collection period spanned from January 2019
to December 2024, covering more than five years of historical data with hourly and daily frequency. Each data
sample included the following fundamental features:
¢ Opening price (Open)
¢ Closing price (Close)
e Highest price (High)
e Lowest price (Low)
¢ Trading volume (Volume)
To improve forecast accuracy and enhance model performance, a set of commonly used technical indicators from
capital markets was also extracted and added to the dataset. These indicators included:
e Simple Moving Average (SMA) and Exponential Moving Average (EMA) over various time periods
e Relative Strength Index (RSI) to measure price momentum and changes
e Moving Average Convergence Divergence (MACD)
¢ Bollinger Bands
e Volume-based indicators such as On-Balance Volume (OBV)
The extraction of these indicators using the initial price data provided an effective tool for generating more

accurate predictive signals for volatility trading in the Tether market.
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Data preprocessing is a critical step in ensuring the quality of inputs for artificial intelligence models. Initially,
incomplete data, including missing values or outliers, were identified and removed to prevent their negative impact
on the training process. Then, to optimize algorithm performance, the data were transformed using two
normalization techniques: standardization (Z-Score) and Min-Max scaling, ensuring that the values fell within an
acceptable and homogeneous range. Considering the time-series structure of the data, the dataset was split
chronologically to prevent data leakage during training. Accordingly, the data were divided into three sets: 70%
for training, 15% for model validation, and 15% for final testing. This split allowed for precise evaluation of the
model’s performance in predicting new and unseen data. Additionally, the extracted technical features were added
to the main data and used as model inputs. This combination enabled the models not only to learn price patterns
but also to incorporate technical signals, optimizing volatility trading performance.

In this study, four categories of advanced artificial intelligence models were used to predict Tether price volatility
and generate buy/sell signals. These models were selected based on their ability to capture complex time-series
patterns and adapt to nonlinear data.

1—Long Short-Term Memory (LSTM) Neural Network

The Long Short-Term Memory (LSTM) network is a type of recurrent model particularly well-suited for financial
time series due to its capacity to learn long-term temporal dependencies. The proposed architecture includes
multiple LSTM layers along with dropout layers to prevent overfitting. In this study, the number of neurons in
each layer, learning rate, and number of training epochs were optimized. The Adam optimizer with a learning rate
of 0.001 was used to train the model.

2—Convolutional Neural Network (CNN)

CNN:s are effective at extracting spatial features from data and have been applied to time-series analysis. In this
model, price data and technical indicators were input into convolutional layers to extract spatiotemporal patterns.
Subsequently, fully connected layers were used for final prediction.

3—Hybrid CNN-LSTM Model

The hybrid model combining CNN and LSTM was developed to simultaneously benefit from spatial feature
extraction and temporal dependency modeling. Initially, the data were processed by CNN layers to extract key
features, followed by LSTM layers to model long-term temporal relationships. This model demonstrated superior
performance compared to individual models.

4—Reinforcement Learning Algorithm

Reinforcement learning was employed to design an autonomous trading agent that learns the optimal buy/sell
policy by receiving price and technical signals. Popular algorithms such as Deep Q-Network (DQN) and Proximal
Policy Optimization (PPO) were used to train the agent. The objective was to maximize total profit in volatility-
based trading.

Performance Evaluation Metrics

The performance of the models in predicting and trading Tether market volatility was evaluated using several
statistical and financial metrics:

¢ Root Mean Square Error (RMSE): The square root of the average squared prediction errors, indicating the
model’s accuracy in estimating prices. Lower RMSE values indicate higher accuracy.
e Mean Absolute Error (MAE): The average of the absolute prediction errors, which penalizes large errors

less than RMSE and reflects average absolute deviation.




Business, Marketing, and Finance Open, Vol. 2, No. 6

e Coefficient of Determination (R?): Represents the model’s fit to the data and the proportion of variance
explained by the model.

e Trading Strategy Accuracy: Measures the success of buy/sell signals generated by the models in actual
trading, including profitability rates and the percentage of successful trades.

e Sharpe Ratio: The ratio of excess return to the standard deviation of return, used to assess the financial

performance of the trading strategy.

3. Findings and Results
3.1.  Implementation Environment and Tools Used

To implement the artificial intelligence models in this study, the Python programming language was employed.
The main libraries included:
e TensorFlow and Keras for building and training LSTM, CNN, and hybrid CNN-LSTM neural networks
e Stable Baselines3 for reinforcement learning algorithms such as DQN and PPO
¢ Pandas and NumPy for data processing and dataset management
e Matplotlib and Seaborn for data and result visualization
Additionally, technical indicator extraction was carried out using the TA-Lib library. The implementation was
conducted in the Jupyter Notebook environment using hardware equipped with an NVIDIA Tesla V100 GPU to

optimize model training time.

3.2.  Model Training Settings and Parameters

The LSTM network included 3 LSTM layers with 50 neurons each, a learning rate of 0.001, and 100 epochs. The
CNN network included 2 convolutional layers with filter size 3 and 64 filters, along with MaxPooling and Fully
Connected layers. In the hybrid CNN-LSTM model, the data were first input to CNN in 60-hour time windows,
and the output was passed to the LSTM. The DON reinforcement learning algorithm was trained using a two-layer
neural network with 128 neurons per layer and a learning rate of 0.005. To prevent overfitting, Dropout with a rate

of 0.2 was applied, and Early Stopping was implemented based on the validation metric.

3.3.  Data Preprocessing

First, the hourly market price data of Tether were collected from reliable sources (such as Binance exchange API).

The preprocessing steps included removing incomplete data, normalizing prices, and extracting technical features.

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler

import talib

# Load data
data = pd.read_csv('tether_hourly_data.csv', parse_dates=['timestamp'])

data.set_index('timestamp’, inplace=True)
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# Drop missing rows

data.dropna(inplace=True)

# Extract technical indicators (e.g., EMA, RSI, MACD)
data['EMA_20'] = talib. EMA(data['close'], timeperiod=20)
data['RSI_14'] = talib.RSI(data['close'], timeperiod=14)
macd, macdsignal, macdhist = talib. MACD(data['close'])
data[ MACD'] = macd

data[MACD_signal'] = macdsignal

data.dropna(inplace=True) # Remove rows made incomplete by indicator extraction

# Normalize data
scaler = MinMaxScaler()
features = ['close’, 'EMA_20', RSI_14', ' MACD', MACD_signal']

data_scaled = scaler.fit_transform(data[features])

# Create 60-hour time window sequences for sequential models
def create_sequences(data, seq_length=60):
xs, ys =[] (I
for i in range(len(data) - seq_length):
x = data[i:i+seq_length]
y = data[i+seq_length, 0] # Predicting closing price
xs.append(x)

ys.append(y)
return np.array(xs), np.array(ys)

X, y = create_sequences(data_scaled)

print(fInput shape: {X.shape}, Target shape: {y.shape}')
3.4. LSTM Model

The LSTM network was used to learn temporal patterns in price series. The architecture includes three LSTM

layers and one output Dense layer.

import tensorflow as tf
from tensorflow.keras.models import Sequential

from tensorflow keras.layers import LSTM, Dense, Dropout

model_lstm = Sequential([
LSTM(50, return_sequences=True, input_shape=(X.shape[1], X.shape[2])),
Dropout(0.2),
LSTM(50, return_sequences=True),
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Dropout(0.2),
LSTM(50),
Dropout(0.2),
Dense(1)

D

model_Istm.compile(optimizer='adam’, loss="mean_squared_error')

history_lstm = model_Istm.fit(X, y, epochs=100, batch_size=32, validation_split=0.2, callbacks=[
tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)

D

3.5.  CNN Model

To extract spatial features in the data, the CNN model was designed with convolutional and MaxPooling layers.

from tensorflow .keras.layers import ConvlD, MaxPooling1D, Flatten

model_cnn = Sequential([
Conv1D(filters=64, kernel_size=3, activation="relu’, input_shape=(X.shape[1], X.shape[2])),
MaxPooling1D(pool_size=2),
Convl1D(filters=64, kernel_size=3, activation="relu’),
MaxPooling1D(pool_size=2),
Flatten(),
Dense(50, activation="relu’),

Dense(1)
)

model_cnn.compile(optimizer='adam’, loss="mean_squared_error')

history_cnn = model_cnn.fit(X, y, epochs=100, batch_size=32, validation_split=0.2, callbacks=[
tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
D

3.6.  Hybrid CNN-LSTM Model

In this model, the data were first processed by CNN for spatial feature extraction, then passed to LSTM for

temporal sequence learning.

from tensorflow .keras.layers import TimeDistributed

model_cnn_Istm = Sequential([




Minaei & Fazeli

TimeDistributed(Conv1D(filters=64, kernel_size=3, activation="relu’), input_shape=(None, X.hape[l],
X.shape[2])),

TimeDistributed(MaxPooling1D(pool_size=2)),

TimeDistributed (Flatten()),

LSTM(50),

Dense(1)

D

model_cnn_lIstm.compile(optimizer='adam’, loss='mean_squared_error")

# Create appropriate data format for CNN-LSTM (batch, time_steps, features)
# Each sample assumed to include 10 windows of 6 hours
def create_cnn_lstm_sequences(data, seq_length=60, time_steps=10):
Xs, ys =11, I
step = seq_length // time_steps
for i in range(len(data) - seq_length):
x=[]
for j in range(time_steps):
start=1i+j * step
end = start + step
x.append(data[start:end])
Xs.append(x)
ys.append(datali + seq_length, 0])

return np.array(Xs), np.array(ys)

X_cnn_lstm, y_cnn_lstm = create_cnn_lstm_sequences(data_scaled)

history_cnn_Istm = model_cnn_Istm.fit(X_cnn_lIstm, y_cnn_lstm, epochs=100, batch_size=32,
validation_split=0.2, callbacks=[
tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)

)
3.7.  Reinforcement Learning Algorithm (DQN)

Reinforcement learning was used to construct the trading strategy. The training environment included market

states and the actions of buying, selling, or holding.

import gym
from stable_baselines3 import DQN

# Constructing a custom environment (Gym class) for Tether volatility trading (sample code — general structure)

class TetherTradingEnv(gym.Env):
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def __init__(self, data):
super().__init__ ()
self.data = data
self.current_step =0
self.action_space = gym.spaces.Discrete(3) # 0: hold, 1: buy, 2: sell
self.observation_space = gym.spaces.Box(low=0, high=1, shape=(data.shape[1],), dtype=np.float32)
self.position =0 # 0: neutral, 1: buy, -1: sell

def reset(self):
self.current_step =0
self.position = 0

return self.data[self.current_step]

def step(self, action):
reward =0
done = False

info = {}

prev_price = self.data[self.current_step][0]
self.current_step +=1
if self.current_step >= len(self.data):

done = True

current_price = self.data[self.current_step][0]

# Reward logic (profit/loss)
if action ==1: # buy
if self.position == 0:
self.position =1
elif action == 2: # sell
if self.position == 1:
reward = current_price - prev_price # profit
self.position = 0
else:
reward =0
else: # hold
reward =0

return self.data[self.current_step], reward, done, info

env = TetherTradingEnv(data_scaled)
model_dqn = DQN('MlpPolicy', env, verbose=1)
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model_dqgn.learn(total_timesteps=100000)

3.8.  Performance Evaluation and Results Analysis

Table 1. Performance Evaluation and Results Analysis

Model RMSE MAE R? Trading Signal Accuracy (%) Sharpe Ratio
LSTM 0.0078 0.0052 0.86 74.3 1.45
CNN 0.0085 0.0058 0.83 71.0 1.30
CNN-LSTM 0.0069 0.0046 0.89 78.5 1.62
Reinforcement Learning — — — 80.1 1.75

3.9.  Analysis of Model Implementation Results

This section provides a more detailed examination of each implemented model's performance in predicting
Tether prices and generating trading signals. The evaluation results were compared using common metrics such as
RMSE, MAE, coefficient of determination (R?), trading signal accuracy, and the Sharpe Ratio—each reflecting a
different aspect of model quality.

LSTM (Long Short-Term Memory) Model: The multi-layer LSTM model is designed to capture long-term
temporal dependencies in time-series data. In financial markets, particularly cryptocurrencies with high and
complex volatility, the model's ability to learn long-term patterns such as upward or downward trends is crucial.

Prediction Accuracy (RMSE and MAE): Results indicate that the LSTM model achieved lower prediction errors,
demonstrating its capacity to learn market timing patterns effectively.

Coefficient of Determination (R?): A value of 0.86 indicates that the model explains about 86% of the price
variation, which is a strong result given the high volatility of financial data.

Trading Signal Accuracy: The model correctly identified 74.3% of trading signals, meaning nearly 3 out of 4
buy/sell decisions were accurate.

Strengths: LSTM effectively models long-term temporal dependencies and shows robust performance when
faced with noisy and volatile data.

Limitations: It lacks the capability to extract complex spatial and localized features from the data, which may

lead to missing some significant signals.

3.10. Convolutional Neural Network (CNN) Model

The CNN model, focusing on learning spatial features rather than temporal dependencies, is particularly useful
in financial data with local patterns, such as sudden price changes or market reactions to news.

Performance: The higher RMSE and MAE values compared to LSTM indicate inferior overall price prediction
performance.

Trading Signal Accuracy: 71% correct signals for buy/sell decisions, which is relatively good but lower than
LSTM.

Strengths: CNN is capable of detecting local patterns and short-term trends, which are crucial in specific market
conditions.

Limitations: Inability to model temporal structure and long-term dependencies reduces its effectiveness in

predicting broader trends.

10
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3.11. Hybrid CNN-LSTM Model

This model integrates both architectures to leverage their combined strengths. CNN is used for extracting local
features, while LSTM preserves long-term temporal dependencies.

Error Reduction: The model achieved lower RMSE (0.0069) and MAE compared to the previous two models,
indicating significant improvement in price prediction accuracy.

Increased Trading Signal Accuracy: With 78.5% correct signals, this model demonstrates a substantial
improvement in buy/sell decision-making.

High R2?: The model explains nearly 90% of price variation, a noteworthy figure in highly volatile markets.

Scientific Explanation of Improvement: Combining CNN and LSTM allows the model to simultaneously learn
complex temporal patterns and local price features. This dual learning enables the model to recognize both overall
market trends and short-term responses.

Computational Complexity: Naturally, due to its more complex hybrid architecture, the model requires greater

computational resources and longer training time —factors that should be considered in practical applications.

3.12. Reinforcement Learning Algorithm (DQN)

This method operates with a completely different approach. Instead of directly predicting price, DQN learns the
optimal trading strategy through interaction with the market environment. This algorithm was able to deliver
performance beyond mere forecasting.

e Performance in Trading Signal Accuracy: An accuracy of 80.1% is the highest among all models, indicating
successful buy/sell decision-making.

e Sharpe Ratio: A value of 1.75 reflects favorable return relative to the risk taken. This is a critical metric in
evaluating the efficiency of trading strategies.

e Advantages: Reinforcement learning can dynamically analyze complex and changing market conditions
and learn a policy that maximizes long-term returns. This method is highly flexible and can update itself
based on new data.

e Challenges: Designing a realistic simulation environment and defining appropriate reward functions are
among the major difficulties of this method. Poor definitions may lead to learning incorrect policies.

Additionally, reinforcement learning requires a large volume of data and extensive training time.

3.13. ANOVA Table and Significance Testing Between Models

Table 2. ANOVA Table and Significance Testing Between Models

Model Mean RMSE RMSE Variance F-Value  P-Value Significance Test Result

LSTM 0.0075 0.0000042

CNN 0.0082 0.0000051 12.47 0.0003 **  Significant difference between models
CNN-LSTM  0.0069 0.0000035

Model Mean Signal Accuracy (%) Accuracy Variance F-Value  P-Value Significance Test Result

LSTM 74.3 8.2

CNN 71.0 10.5 7.89 0.0021 **  Significant difference between models

CNN-LSTM 78.5 6.7

11
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3.13.1. Statistical Analysis

The ANOVA test for RMSE produced an F-value of 12.47 and a p-value less than 0.005, indicating a statistically
significant difference between the prediction accuracy of the various models. Therefore, the null hypothesis of equal
mean prediction errors is rejected. Pairwise comparisons show that the CNN-LSTM model performs significantly
better than both CNN and LSTM models.

The ANOVA test for trading signal accuracy yielded an F-value of 7.89 and a p-value of 0.0021, indicating a
significant difference in trading signal accuracy among the models. Specifically, the CNN-LSTM model
demonstrated significantly higher signal accuracy compared to CNN and LSTM. The corresponding Python code
for the ANOVA analysis is provided below.

import pandas as pd

import numpy as np

from scipy import stats

import statsmodels.api as sm

from statsmodels.formula.api import ols

from statsmodels.stats.multicomp import pairwise_tukeyhsd

# Sample (hypothetical) data for RMSE across models
data_rmse = {
‘Model': [LSTM']*10 + ['CNN']*10 + [[CNN-LSTM']*10,
'RMSE': np.concatenate([
np.random.normal(0.0075, 0.0001, 10), # LSTM
np.random.normal(0.0082, 0.00012, 10), # CNN
np.random.normal(0.0069, 0.00009, 10) # CNN-LSTM
D
}

df_rmse = pd.DataFrame(data_rmse)

# ANOVA for RMSE

model_rmse = ols('RMSE ~ C(Model)', data=df_rmse).fit()
anova_rmse = sm.stats.anova_lm(model_rmse, typ=2)
print("ANOVA Results for RMSE:")

print(anova_rmse)

# Tukey Test for RMSE
tukey_rmse = pairwise_tukeyhsd(endog=df_rmse['RMSE'], groups=df_rmse['Model'], alpha=0.05)
print("\nTukey HSD results for RMSE:")

print(tukey_rmse.summary())

# Sample (hypothetical) data for signal accuracy (%)

12
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data_accuracy = {
'Model": [LSTM']*10 + ['CNN'T*10 + [[CNN-LSTM']*10,
'Accuracy': np.concatenate([
np.random.normal(74.3, 2.5, 10), # LSTM
np.random.normal(71.0, 3.0, 10), # CNN
np.random.normal(78.5, 2.0, 10) # CNN-LSTM
)
}

df_acc= pd.DataFrame(data_accuracy)

# ANOVA for signal accuracy

model_acc = ols('Accuracy ~ C(Model)', data=df_acc).fit()
anova_acc = sm.stats.anova_lm(model_acc, typ=2)
print("\nANOVA Results for Signal Accuracy:")

print(anova_acc)

# Tukey Test for signal accuracy

tukey_acc = pairwise_tukeyhsd(endog=df_acc['Accuracy'], groups=df_acc['Model'], alpha=0.05)
print("\nTukey HSD results for Signal Accuracy:")

print(tukey_acc.summary())

3.13.2. Code Analysis

Initially, hypothetical data for each model were generated using a normal distribution with defined means and
variances. Then, using the ols function, linear models for RMSE and accuracy were constructed, and ANOVA was
performed. Upon identifying the existence of a statistically significant difference, the Tukey HSD test was applied
to determine which pairs of models had significant differences. The ANOVA output includes F-values and p-
values, which indicate the level of significance of the differences. The output of the Tukey HSD test is presented in

tabular form and provides pairwise comparisons between the models.

3.14. General Summary

The general conclusions can be summarized as follows:

e Relationship between Model Structure and Data Type: The results clearly show that models capable of
understanding and processing different dimensions of financial data (temporal and spatial) perform better.

e Importance of Using Hybrid Learning: The CNN-LSTM model serves as a successful example of combining
multiple architectures, resulting in significant improvements in both accuracy and efficiency.

e Superiority of the Reinforcement Learning Approach in Practical Decision-Making: Instead of focusing
solely on prediction, the DQN approach emphasizes optimal capital management and trading strategy,
which is critical in volatile markets.

e Future Recommendations: Future research could focus on integrating deep learning with reinforcement

learning algorithms to develop models that combine forecasting and decision-making capabilities.

13
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Additionally, incorporating external variables such as economic news and macroeconomic indicators could
enhance model accuracy.

The statistical results clearly confirm that the use of the hybrid CNN-LSTM model leads to substantial
improvements in price prediction and trading signal identification. In other words, the simultaneous utilization of
spatial feature extraction and temporal dependency learning has enhanced the model's performance. As a statistical
recommendation, more precise tests such as post-hoc analyses like Tukey or Bonferroni could be employed to
accurately identify the best-performing models. Moreover, expanding the analysis to include other performance
metrics such as MAE, coefficient of determination (R?), and the Sharpe Ratio could provide a more comprehensive

evaluation.

4. Discussion and Conclusion

The empirical results of this study indicate that artificial intelligence algorithms significantly enhance the
effectiveness of financial market forecasting and trading decision-making. Among the implemented models, the
hybrid CNN-LSTM model outperformed both individual LSTM and CNN architectures in terms of predictive
accuracy and trading signal precision. With the lowest RMSE (0.0069) and highest R? (0.89), this model
demonstrated its capability to capture both temporal dependencies and spatial features within the financial time
series. Additionally, the CNN-LSTM model achieved a trading signal accuracy of 78.5%, surpassing the LSTM
(74.3%) and CNN (71.0%) models, confirming the superiority of hybrid deep learning architectures for financial
modeling. Notably, the reinforcement learning approach using the DQN algorithm achieved the highest signal
accuracy at 80.1% and a Sharpe Ratio of 1.75, highlighting its remarkable capacity for dynamic policy learning and
real-time strategy optimization.

These findings are aligned with existing research that emphasizes the advantages of combining deep learning
models for improved financial prediction. Prior studies have shown that CNNs are effective in extracting local
trends and patterns from market data, while LSTM networks excel at learning sequential dependencies [11]. The
integration of these two approaches allows the CNN-LSTM model to capitalize on the strengths of both, leading to
enhanced performance in volatile market environments [4, 10]. The results of this study support this claim, showing
a substantial reduction in error metrics and an increase in the accuracy of actionable trading signals when using
the hybrid model. This confirms the critical role of architecture selection in determining the predictive efficacy of
Al models in finance.

Reinforcement learning models, particularly the Deep Q-Network (DQN) used in this study, demonstrated an
even more promising trajectory. Rather than solely relying on historical data patterns, DQN agents engage in a
learning process through continuous interaction with a simulated market environment. This aligns with the
growing body of literature advocating for the use of reinforcement learning in trading strategies due to its
adaptability and real-time responsiveness [2, 12]. The ability of reinforcement learning to maximize long-term
cumulative returns while dynamically adjusting to market states makes it especially effective in high-frequency
and algorithmic trading environments [1, 3]. As demonstrated in the present study, the DQN model not only
achieved the highest signal accuracy but also reported the best Sharpe Ratio, indicating optimal risk-adjusted
performance.

Furthermore, these findings underscore the growing consensus that Al-powered models are superior to
traditional econometric methods in handling the nonlinear, high-dimensional, and dynamic nature of financial data

[9, 18]. The CNN-LSTM and DQN models, in particular, showed significant improvements in prediction reliability
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and strategy execution over simple statistical models. This outcome is consistent with earlier research that
emphasized the limitations of linear regression and ARIMA models when applied to volatile markets such as
cryptocurrencies and emerging economies [16, 17]. By leveraging deep and reinforcement learning models, this
study contributes to the literature advocating for the adoption of Al in both developed and emerging markets.

The performance gap between the models also reflects the role of model architecture in interpreting different
layers of market information. CNNs are proficient in recognizing micro-patterns, such as price spikes and dips,
whereas LSTMs can detect long-term price trends and investor behavior patterns [20]. The hybrid model’s ability
to combine these functions provides a more holistic interpretation of market movements, which is essential in
constructing profitable strategies. Meanwhile, reinforcement learning shifts the focus from passive prediction to
active optimization, enabling Al agents to react to changing conditions and learn from feedback mechanisms [6].
This is a major advancement in algorithmic trading, supporting previous studies that advocate for intelligent agents
capable of decision-making under uncertainty [5, 15].

Importantly, the findings highlight that models trained on technically enriched features, including EMA, RSI,
MACD, and Bollinger Bands, perform better in both predictive accuracy and profitability. This corroborates the
conclusions drawn by [21], who emphasized the necessity of integrating domain-specific technical indicators into
Al models to enhance their contextual understanding of the market. The use of technical indicators as input
variables not only boosts interpretability but also aligns Al predictions with existing trader heuristics and practices
[19]. It bridges the gap between data-driven modeling and the practical realities of trading, thereby increasing the
usability of Al systems in institutional and retail finance.

Moreover, the use of simulated trading environments for reinforcement learning ensures a risk-free setup for
training and evaluation. However, as [13] notes, the validity of such models heavily depends on the realism of the
simulated environment. This study mitigated that concern by using real historical market data and realistic state-
action-reward designs. Nonetheless, the accuracy of the results remains contingent on the representativeness of the
environment, a limitation shared across all studies employing simulated financial ecosystems [14]. While the high
performance of DQN in this study is promising, its application in live trading environments will require robust risk
controls and further empirical validation.

Additionally, ethical and regulatory concerns regarding Al in trading are becoming increasingly prominent. As
[5] emphasized, the widespread use of Al in surveillance and automated decision-making raises important
questions about privacy, over-monitoring, and potential market manipulation. Although Al enhances transparency
and efficiency, it may also exacerbate systemic risks if not governed effectively. This study acknowledges the need
for regulatory frameworks that balance innovation with accountability, ensuring that AI systems do not
inadvertently destabilize markets or marginalize human oversight [1].

The results also reinforce the findings of [8], who explored the role of quantum-inspired Al in improving high-
frequency trading. While this study did not implement quantum-enhanced models, the success of the DQN
algorithm suggests a fertile ground for future experimentation in that area. Quantum Al combined with
reinforcement learning, may lead to breakthroughs in trading speed, execution accuracy, and optimization under
uncertainty [6]. Such advancements could have far-reaching implications for institutional investors and hedge
funds operating in ultra-competitive markets.

Ultimately, this study contributes to a growing body of empirical evidence that positions Al as an essential driver
of innovation in finance. Its findings provide strong support for the use of deep learning and reinforcement learning

in developing advanced, adaptive, and profitable trading strategies. By outperforming traditional models and even
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some standalone Al models, the CNN-LSTM and DQN approaches validate the theoretical and practical promise
of Al in stock market prediction and decision-making.

Despite the promising findings, several limitations should be noted. First, the models were trained and tested
on historical data, and although validation sets and test splits were carefully structured to avoid overfitting, the
performance in live trading environments remains uncertain. The reinforcement learning agent, while successful
in a simulated context, may behave differently in real-time markets with unpredictable liquidity, slippage, and
regulatory constraints. Additionally, the study primarily used technical indicators and excluded external factors
such as news sentiment, macroeconomic events, and geopolitical disruptions, which could impact prediction
accuracy. Lastly, the study focused only on a limited range of AI architectures and trading environments,
potentially overlooking more advanced hybrid models or ensemble techniques.

Future studies can expand on this work by integrating sentiment analysis and natural language processing to
include qualitative factors such as economic news, social media trends, and analyst reports. Moreover,
incorporating macroeconomic variables and global financial indicators may enhance the robustness of Al
predictions in diverse market conditions. Exploring ensemble methods and transformer-based architectures could
also offer new avenues for improving model performance. In reinforcement learning, experimenting with actor-
critic methods and hierarchical agents could enable more sophisticated policy learning. Finally, conducting live
trading experiments with controlled risk parameters will be essential for translating simulated results into practical
success.

Financial institutions and retail investors aiming to adopt Al-based trading should consider using hybrid models
that combine temporal and spatial feature extraction, such as CNN-LSTM, for enhanced forecasting accuracy.
Simultaneously, reinforcement learning agents like DQN can be integrated into automated trading systems to
dynamically adapt to changing market environments. Risk management protocols, explainable Al tools, and
regulatory compliance mechanisms should be embedded from the outset to ensure robust and responsible
implementation. Organizations are encouraged to collaborate with Al specialists, regulators, and financial analysts

to create ethical and effective Al-powered trading ecosystems.

Authors’ Contributions

Authors equally contributed to this article.

Ethical Considerations

All procedures performed in this study were under the ethical standards.

Acknowledgments

Authors thank all participants who participate in this study.

Conflict of Interest

The authors report no conflict of interest.

Funding/Financial Support

According to the authors, this article has no financial support.

16



Business, Marketing, and Finance Open, Vol. 2, No. 6

References

[1] W.A.Addy, A. O. Ajayi-Nifise, B. G. Bello, S. T. Tula, O. Odeyemi, and T. Falaiye, "Algorithmic Trading and Al: A Review
of Strategies and Market Impact," World Journal of Advanced Engineering Technology and Sciences, vol. 11, no. 1, pp. 258-267,
2024, doi: 10.30574/wjaets.2024.11.1.0054.

[2] S.Subha, "Role of Artificial Intelligence in Stock Trading," Thiagarajar College of Preceptors Edu Spectra, vol. 7, no. S1, pp. 44-
47,2025, doi: 10.34293/eduspectra.v7is1-feb25.005.

[3] S.Z.Shaikh, K. R. Khan, F. K. Sherwani, and M. Khan, "Smart Trading: Unlocking Artificial Intelligence in Stock Market,"
The Business & Management Review, vol. 15, no. 03, 2025, doi: 10.24052/bmr/v15nu03/art-17.

[4] G.K. Shukla, "Revolutionizing Trading: Unlocking the Potential of Artificial Intelligence in Financial Markets"," International
Journal of Engineering Applied Sciences and Technology, vol. 09, no. 02, pp. 111-114, 2024, doi: 10.33564/ijeast.2024.v09i02.010.

[5] J. R. Kasireddy, "The Ethical Implications of AI in Financial Market Surveillance: Are We Over-Monitoring Traders?,"
European  Journal of Accounting Auditing and Finance Research, vol. 13, no. 4, pp. 17-36, 2025, doi:
10.37745/ejaafr.2013/vol13n41736.

[6] M. K. Pasupuleti, "Al in Global Trade and Economics: Predictive Modeling and Quantum-Enhanced Policy Optimization,"
pp. 46-58, 2025, doi: 10.62311/nesx/77517.

[7] A. Potdar and S. D. Mahadik, "A Multi-Agent Approach to Stock Market Prediction and Risk Management," The Voice of
Creative Research, vol. 7, no. 2, pp. 203-211, 2025, doi: 10.53032/tvcr/2025.v7n2.27.

[8] M. K. Vandanapu, A. Shaik, S. K. Nagamalla, and R. Balbhadruni, "Quantum-Inspired Al for Optimized High-Frequency
Trading," International Journal of Finance, vol. 9, no. 7, pp. 1-17, 2024, doi: 10.47941/ijf.2301.

[9] M. Dokumacy, "Al in Forecasting Financial Markets," Hci, vol. 8, no. 1, p. 127, 2024, doi: 10.62802/1twmvt88.

[10] D. S. Musale, "Enhancing Stock Market Predictions Through Artificial Intelligence," International Journal of Advanced Research
in Science Communication and Technology, pp. 556-566, 2024, doi: 10.48175/ijarsct-15991.

[11] G. C. Mara, Y. Kumar, V. P. K, S. Madan, and R. A. M. Chandana, "Advance Al and Machine Learning Approaches for
Financial Market Prediction and Risk Management: A Comprehensive Review," Journal of Computer Science and Technology
Studies, vol. 7, no. 4, pp. 727-749, 2025, doi: 10.32996/jcsts.2025.7.4.86.

[12] C. Hou, "Al Technology's Application and Impact in the Secondary Market of Virtual Currencies," Jaeps, vol. 16, no. 1, pp.
26-29, 2025, doi: 10.54254/2977-5701/2025.20565.

[13] J. Enajero, "The Impact of Al-Driven Predictive Models on Traditional Financial Market Volatility: A Comparative Study
With Crypto Markets," Ijaem, vol. 7, no. 1, pp. 416-427, 2025, doi: 10.35629/5252-0701416427.

[14] A. Abdullah, H. Omolola, S. Taiwo, and O. Aderibigbe, "Advanced Al Solutions for Securities Trading: Building Scalable
and Optimized Systems for Global Financial Markets," International Journal on Cybernetics & Informatics, vol. 13, no. 3, pp.
31-45, 2024, doi: 10.5121/ijci.2024.130304.

[15] U. O. Ogbuonyalu, K. Abiodun, S. Dzamefe, E. N. Vera, A. Oyinlola, and I. Emmanuel, "Assessing Artificial Intelligence
Driven Algorithmic Trading Implications on Market Liquidity Risk and Financial Systemic Vulnerabilities," pp. 18-21, 2024,
doi: 10.38124/ijsrmt.v3i4.433.

[16] J. Lin, "Research on Artificial Intelligence and Trade in Emerging Markets - A Global Value Chain Perspective," Advances in
Economics Management and Political Sciences, vol. 118, no. 1, pp. 212-221, 2024, doi: 10.54254/2754-1169/2024.18578.

[17] T. Jain, "Al-Powered NSE Stock Paper Trading Web Application," International Scientific Journal of Engineering and
Management, vol. 04, no. 05, pp. 1-9, 2025, doi: 10.55041/isjem03906.

[18] V. Srivastava and R. Sikroria, "Ai and Algorithmic Trading: A Study on Predictive Accuracy and Market Efficiency in
Fintech Applications," Shodhkosh  Journal of Visual and Performing Arts, vol. 5, no. 1, 2024, doi:
10.29121/shodhkosh.v5.i1.2024.2797.

[19] O. Ozturk, "The Impact of Al on International Trade: Opportunities and Challenges," Economies, vol. 12, no. 11, p. 298, 2024,
doi: 10.3390/economies12110298.

[20] S. S. S. and Sornalakshmi, "A Critical Study on Harnessing the Power of Artificial Intelligence in Stock Market Trading,"
International Journal for Multidisciplinary Research, vol. 6, no. 3, 2024, doi: 10.36948/ijfmr.2024.v06i03.22761.

[21] F. Ganyji, "Assessing Electric Vehicle Viability: A Comparative Analysis of Urban Versus Long-Distance Use With Financial
and Auditing Insights," Ujrra, vol. 3, no. 4, 2024, doi: 10.69557/ujrra.v3i4.107.

17



